Journal of Network and Computer Applications 229 (2024) 103922

Contents lists available at ScienceDirect

NETWORKE&
COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

journal homepage: www.elsevier.com/locate/jnca

Research paper ' 1)

Check for

The universal federator: A third-party authentication solution to federated o
cloud, edge, and fog
Asad Ali®*, Ying-Dar Lin®, Jian Liu ¢, Chin-Tser Huang ¢

a National Institute of Cyber Security, Ministry of Digital Affairs, No. 143, Yanping S. Road, Taipei, 100057, Taiwan
b National Yang Ming Chiao Tung University, No. 1001, Daxue Rd., East District, Hsinchu City, 300093, Taiwan
¢ University of South Carolina, 550 Assembly Street, Columbia, 29201, SC, USA

ARTICLE INFO ABSTRACT

Keywords: Cloud, Edge, and Fog computing provide computational services to different end users. A federation among
Authentication these computing paradigms is beneficial, as it enhances the capability, capacity, coverage, and services of
Federation

cloud, edge, and fog. An authentication method is needed to realize such a federation among cloud, edge,
and fog so that a user belonging to one of these computing paradigms can use the services offered by other
computing paradigms in the federation without creating a new account. This paper proposes a standard-
compliant universal federator that transparently provides third-party authentication among different protocols,

Cloud computing
Edge computing
Fog computing

OIDC
EPS-AKA used by cloud, edge, and fog, such as 3GPP EPS-AKA, OpenID Connect (OIDC), and 802.1x. The federator
802.1x provides transparency by using a controller and modules that act as virtual counterparts of the authentication

entities in EPS-AKA, OIDC, and 802.1x. These virtual counterparts play multiple roles, depending upon the
involved protocols. We deployed a testbed, published our implementation on GitHub, and tested third-party
authentication for 16 scenarios across EPS-AKA, OIDC, and 802.1x. The results show that our federator
successfully provides third-party authentication while taking 4.07-51.8% of the total authentication time,
which ranges between 1.193-3.825 s for 16 scenarios. Some scenarios involving 802.1x take considerably
longer due to the bottleneck caused by the 802.1x switch. We also conducted a security analysis to show that
our proposed federator fulfills multiple security requirements.

1. Introduction

Cloud computing (Mell et al., 2011) has been one of the most widely
used computing paradigms over the years because of its scalability,
flexibility, quick deployment, and cost savings advantages. However,
the explosion of IoT devices and the introduction of latency-sensitive
applications like augmented reality, multimedia streaming, multiplayer
gaming, and self-driving vehicles have exposed the fundamental lim-
itation of the cloud computing paradigm. Being far away from end
users, the cloud introduces more latency, which is unsuitable for delay-
sensitive applications. Edge computing and fog computing (Bonomi
et al., 2012) solve the latency problem by bringing cloud services closer
to end users.

Edge computing incorporates the capabilities of cloud computing
into mobile network operators, as proposed by the European Telecom-
munication Standards Institute (ETSI). Edge computing is closer to the
end users and provides the same services as cloud computing, but its
latency, capacity, and computing power are lower than the cloud. Fog
computing is like edge computing but closer to the end user. Fog can

* Corresponding author.

be considered a small cloud closer to the user that provides services
such as storage and computation (OpenFog Consortium et al., 2017),
but mobile network operators do not provide it. Although different
terms in the literature are used for computing paradigms similar to fog
computing, such as edge, mobile, and mobile cloud computing, we will
conform to the term fog computing, defined by the Industrial Internet
Consortium (OpenFog Consortium et al., 2017).

Each of these computing paradigms has its own advantages over
other paradigms. Cloud computing provides more computing power
and storage while having latency constraints. Fog and Edge computing
relieves the latency issue but cannot provide computing and storage
power at a cloud scale. There are different heterogeneous IoT devices
with different requirements for different applications. Hence, more than
one computing paradigm is required to fulfill such requirements.

A federation among these computing paradigms is necessary so that
users can avail the advantages of all computing paradigms. The feder-
ation allows different service providers to come together to enhance
their capabilities via leasing capacity and other services from each

E-mail addresses: asad.ali@nics.nat.gov.tw (A. Ali), ydlin@cs.nctu.edu.tw (Y.-D. Lin), jianl@email.sc.edu (J. Liu), huangct@cse.sc.edu (C.-T. Huang).

https://doi.org/10.1016/j.jnca.2024.103922

Received 14 March 2024; Received in revised form 19 May 2024; Accepted 17 June 2024

Available online 22 June 2024

1084-8045/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

https://www.elsevier.com/locate/jnca
https://www.elsevier.com/locate/jnca
mailto:asad.ali@nics.nat.gov.tw
mailto:ydlin@cs.nctu.edu.tw
mailto:jianl@email.sc.edu
mailto:huangct@cse.sc.edu
https://doi.org/10.1016/j.jnca.2024.103922
https://doi.org/10.1016/j.jnca.2024.103922
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnca.2024.103922&domain=pdf

A. Ali et al.

other. Thus, such a federation can be considered a comprehensive and
full-scale computing platform that can satisfy the demands of all sorts
of devices. Depending upon the applications, users may access any of
these computing paradigms simultaneously or at different times as per
their application requirements, such as powerful computation or low
latency.

Moreover, the benefits of federation are two-fold as it allows the
subscribers to have one account-service everywhere, which means that
they can access services provided by different sorts of computing
paradigms without creating multiple accounts. Federation is also ad-
vantageous for the service providers, as they can rely on each other’s
strengths and reduce their weaknesses via leasing capacity from each
other. A well-managed federation among bigger cloud service providers
with smaller fog and edge computing provides more mobility and
freedom.

However, the federation among multiple computing paradigms cre-
ates particular challenges, which include user authentication, secure in-
terfacing, and application mobility, to name a few. A complete federation
among multiple paradigms can only be realized once a proper authen-
tication mechanism is put in place. Different computing paradigms use
different authentication protocols, and the translation process among
these protocols is complicated and expensive. This makes the authen-
tication of a user the most critical challenge because if a user has to
create an account on every different service provider, it will introduce
the problem of handling multiple accounts and re-subscriptions, which
will incur latency. A federation will allow a user to access different
providers’ services without creating a separate account on those com-
puting platforms. Third-party authentication is the solution that can
allow service providers to authenticate users without creating new
accounts. A service provider with the user credentials will be referred
to as the home service provider, and the one who wants to authenticate
the user without the credentials will be referred to as the foreign service
provider.

Another problem that arises here is the existence of different authen-
tication protocols for multiple service providers like OpenID Connect
(OIDC), 802.1x, and EPS-AKA. Each of these protocols has differ-
ent authentication mechanisms; hence, the third-party authentication
mechanism would need to translate between these protocols with the
help of an entity. This will also raise security concerns, as the newly
introduced entity needs to be secure enough so that service providers
can trust that entity. In this research, we aim to answer the following
vital questions: Can a foreign service provider authenticate a user with-
out an account? If yes, how to translate among multiple authentication
protocols used by multiple service providers, and how to keep this
process transparent? How to keep the process secure so that service
providers can trust it, and how much latency is introduced while doing
that?

There are a few studies in the literature that propose federation
among clouds (Villegas et al., 2012), or federation among cloud and
edge, edge and fog (Ali et al., 2021a), fog and fog (Ali et al., 2021b),
or provide novel authentication mechanisms for security. However,
no study solves the third-party authentication problem in federated
cloud, edge, and fog environments as a whole. We propose a universal
federator (proxy) to provide third-party authentication among cloud,
edge, and fog using different authentication protocols to solve the
authentication, latency, and security issues. Our designed federator
is standard-compliant and transparent. The federator does not focus
on a couple of paradigms like cloud-edge, edge-cloud, or cloud-fog.
However, it provides a universal translation among cloud, edge, and
fog authentication protocols in all possible scenarios. Our designed
federator comprises a federation controller and modules that serve as
virtual counterparts to the authentication entities within the protocols
involved. Our designed federator provides transparency by using these
modules. The federator we have developed offers a means to simplify
the costly and complex translation process while also achieving cost

Journal of Network and Computer Applications 229 (2024) 103922

reduction. We also provide a backup in case the federator fails, as it is
a single point of failure.

The results of our experiments conducted on a testbed, whose
implementation details are published on GitHub (https://github.com/
ericliujian/3rd-Party-Authenticaion), show that federator successfully
provides third-party authentication among cloud, edge, and fog for
OIDC, EPS-AKA and 802.1x while taking 4.07-51.8% of the authen-
tication time that varies between 1.193-3.825s for 16 scenarios. The
federator also provides multiple authentication options while providing
translation, transparency, and security. The novel contributions of this
work are summarized as follows:

We propose a universal federator that provides federation among
cloud, edge, and fog service providers using multiple protocols.
Our designed federator enables users to conveniently access mul-
tiple service providers using a single account across various ven-
dors.

Our designed federator is standard-compliant, transparent, and
provides multiple login options to the user so that it can select
accordingly.

We conduct a thorough security analysis of our proposed federa-
tor to demonstrate its robustness and ensure its security.

The rest of this paper is organized as follows. Section 2 introduces
OIDC, EPS-AKA, and 802.1x authentication protocols in cloud, edge,
and fog computing paradigms, along with related work. We provide
our problem statement in Section 3. Section 4 introduces the universal
federator along with its design and architecture. The implementation of
the universal federator prototype, federator modules, and the testbed is
presented in Section 5. Section 6 gives the results and evaluation, and
Section 7 provides a discussion section. In Section 8, we conclude the
paper and give some insight for future work.

2. Background

This section explores the cloud, edge, and fog computing back-
ground explaining the three protocols that we will use in this work,
along with the related work and the threat model.

2.1. Computing paradigms applications

2.1.1. Cloud computing

Cloud computing provides the end users with computational, stor-
age, and networking services. A traditional or IoT device can purchase
a subscription for the cloud and use it for data processing, storage, or
analyzing the data. The benefits of the cloud include cost-effectiveness,
scalability, productivity, speed, and reliability. Cloud computing appli-
cations are widespread, such as data storage, testing, social networks,
and backup, as this is the oldest computing paradigm in place. Many
new startups also use cloud computing services for their storage and
computation.

2.1.2. Edge computing

Edge computing stems from the European Telecommunication Stan-
dards Institute’s (ETSI) proposal of integrating virtualization capabili-
ties into the Mobile network operators (MNOs) within the RAN (Radio
Access Network). Edge computing provides services such as compu-
tation and storage within the RAN. These services are similar to the
cloud, but Edge provides these services with lesser computing power,
lesser storage capacity, and reduced latency compared to the cloud.
Edge computing is suitable for cellular network subscribers, as they can
use computational services without subscribing to cloud or fog service
providers. This eliminates the need for a new creation of subscriptions,
which is one motivation for our federator.

https://github.com/ericliujian/3rd-Party-Authenticaion
https://github.com/ericliujian/3rd-Party-Authenticaion
https://github.com/ericliujian/3rd-Party-Authenticaion

A. Ali et al.

2.1.3. Fog computing

Fog computing provides computational services like cloud comput-
ing, but it is decentralized as opposed to the cloud and closer to the
end users. Fog can be considered a small cloud that provides cloud
services closer to the users. Fog computing already exists in smart
homes and smart city environments (Songhorabadi et al., 2023) and
it differs from edge computing as it is not provided by MNOs. Fog
computing is decentralized, and the data, computing, and storage are
located between the devices that generate data and the cloud. Many
applications use fog computing, such as augmented reality, multiplayer
gaming, virtual reality, and multimedia streaming, as fog provides low
latency, faster data transfer, and less bandwidth cost. Although each of
these paradigms has pros and cons, a federation among them is highly
beneficial for the upcoming applications requiring high storage and
low latency. For example, data generated by different IoT devices need
lots of storage space (as provided by the cloud) and low latency (as
provided by edge and fog). Hence, there is a dire need for federation
among these computing paradigms.

2.2. Authentication protocols in cloud, edge, and fog

In modern computing architectures such as cloud, edge, and fog
layers, various authentication protocols are selectively employed by
different vendors to enhance security and efficiency. OpenID Connect
(OIDC) is commonly utilized in cloud and fog environments due to its
robust identity management and federation capability. For edge com-
puting, which often involves mobile networks, EPS-AKA is preferred
for its strong integration with mobile network authentication systems,
ensuring secure user verification. Additionally, 802.1x is applied in fog
computing for its effective network access control, which is crucial for
decentralized fog environments.

2.2.1. OIDC

OpenID Connect (OIDC) provides third-party authentication on top
of OAuth 2.0. The OIDC allows the users to authenticate themselves
with an application via another application. There are three key entities
that are involved in the OIDC authentication. The first is a user, the
second is a Relying Party (RP) and the third is an OpenID Provider
(IdP or OP). When a user attempts to access an application (RP), the RP
redirects the user to the IdP for authentication. The IdP then prompts
the user to authenticate themselves, typically through a username and
password or other authentication mechanisms. Once the authentication
is successful, the IdP generates an identity token containing information
about the user. The IdP then sends this token to the RP, which uses
it to authorize the user and grants access to the requested resources.
This exchange of authentication messages between the user, RP, and
IdP enables users to access diverse applications with a single set of
credentials. Data types exchanged between these entities include iden-
tity tokens containing user information such as user ID and scope.
Many applications use OIDC, and the advantage of using OIDC is that
the user does not need to create a new account every time they use
a new application. There are options like login with Apple, Google,
or Facebook. Therefore, the user can access an application via their
existing account on another application, provided both applications are
federated. This protocol is mainly used in cloud and fog.

2.2.2. EPS-AKA

Evolved Packet System Authentication and Key Agreement (EPS-
AKA) is an authentication protocol that is used in cellular networks for
the authentication of a user. The entities that collaborate seamlessly
in the EPS-AKA authentication are a User Equipment (UE), an eNodeB
(eNB), a Mobility Management Entity (MME), and a Home Subscriber
Server (HSS). The authentication process is initiated when the UE sends
a request message to the MME via eNB. The MME contacts the HSS
located in the core network, which shares an authentication vector
with the MME. The MME then forwards the necessary information to

Journal of Network and Computer Applications 229 (2024) 103922

the UE for calculating the response and authenticates the UE once
it receives the response from the UE. Data types exchanged between
these entities include Authentication Vectors (AVs) that are generated
by the HSS which contain information for the MME and the UE. This
authentication protocol plays a pivotal role not only in ensuring the
integrity of cellular network communications but also in supporting
the deployment of edge computing services, crucial for the evolving
landscape of cellular networks.

2.2.3. 802.1x

Another protocol that vendors can use is the 802.1x protocol. This
is an important protocol that provides authentication to the devices
that need to connect to other devices over a LAN or a WLAN. 802.1x
protocol orchestrates interactions among three essential entities: a
supplicant (end-user), an authenticator (access point that works as a
bridge between the user and the LAN), and a RADIUS server, known
as an authentication server. Each entity serves a distinct role in the
authentication process. The supplicant presents its credentials to the
authenticator to initiate the authentication process. The authenticator
mediates access to the network resources based on the supplicant’s
credentials. However, the critical task of authenticating the supplicant
lies with the RADIUS server, which verifies the supplicant’s credentials
against a centralized database. The data types exchanged include au-
thentication requests and responses, containing user credentials and
challenge tokens. The communication between these three entities is
enabled by the Extensible Authentication Protocol (EAP) is used. By
leveraging EAP, the 802.1x protocol ensures robust and standardized
authentication procedures across diverse network environments. The
deployment of this protocol is particularly prevalent in fog computing
environments.

2.3. Related work

A few studies in the literature provide authentication and federation
among different computing paradigms. We compare them with our
work regarding whether providing third-party authentication, trans-
parency, and multiple protocols support. It can be seen from Table 1
that several works have been done for cloud-cloud: Baran (2018),
Megouache et al. (2020), Aruna et al. (2022) with the objective of fed-
erated authentication, security and data mitigation. Other works (Tar-
gali et al., 2013; Choyi and Brusilovsky, 2016; Han et al., 2019; Li
et al., 2020; Edris et al., 2020) focus on edge—edge scenario. They tried
to solve seamless, third-party, handover, anonymous and federated au-
thentication problems. These studies propose a modification in the ex-
isting protocols or propose a solution approach that is not transparent,
and they also do not consider multiple federation scenarios.

Several studies have explored extending different methods like
OAuth 2.0 (Gibbons et al., 2014), unary-token (Deebak et al., 2020),
blockchain (Zhang et al, 2021) and pre-authentication/post-
authentication (Vinoth et al., 2022) to enhance federation between
cloud-edge environments. These protocols form the foundation for so-
lutions to improve security, seamless connectivity, privacy and reduce
time. Others like Kahvazadeh et al. (2017), Tao et al. (2017), Zhang
et al. (2023) are for cloud—fog scenarios, but all these studies do not
consider the transparency of the proposed solution while only focusing
on one or two federation scenarios.

Other studies in the literature have proposed federation among
edge—fog with the objectives of WLAN-3GPP integration (Roeland and
Rommer, 2014), medical emergency (Nakkar et al., 2020), enhancing
security (Amanlou et al., 2021). For fog—fog scenario, (Santos et al.,
2019; Tuli et al., 2019) use REST HTTP web services for application
migration. Alharbi et al. (2017) focus on security and Ogundoyin and
Kamil (2021) on peer-to-peer authentication. The studies in literature
either propose a novel protocol or propose modifications to the existing
protocols. None of these studies provide transparency and multiple pro-
tocol support while considering multiple federation scenarios among

A. Ali et al.

Table 1
Related work.

Journal of Network and Computer Applications 229 (2024) 103922

Category Name Method Objective Third-party Transparency Multiple Protocols
Authentication Support
Baran (2018) Cloud Proxy Federated Authentication v X X
Cloud-Cloud Megouache et al. (2020) Asymmetric Encryption Improve Security X X X
Aruna et al. (2022) Self-sovereign Identity Data Mitigation X X X
Targali et al. (2013) Generic Federated ID system Seamless Authentication X X X
Choyi and Brusilovsky (2016) Authentication Proxy Third-party Authentication v X X
Edge-Edge Han et al. (2019) Modified EAP-AKA Handover Authentication X v X
Li et al. (2020) Identity based AKE Anonymous Authentication X X X
Edris et al. (2020) OAuth2.0 Federated Authentication v X X
Gibbons et al. (2014) OAuth2.0 Security X X X
Cloud-Edge Deebak et al. (2020) Unary-tolfen Se.amless Connectivity X X X
Zhang et al. (2021) Blockchain Privacy X X X
Vinoth et al. (2022) Pre-authentication Reduce Time and Storage X X X
Kahvazadeh et al. (2017) SDN Master/Slave Control Security X X X
Cloud-Fog Tao et al. (2017) Cross-layer design V2G service provision X X X
Zhang et al. (2023) Role-based Trust Evaluation User Authentication v X X
Roeland and Rommer (2014) GTP Tunneling WLAN-3GPP integration v X X
Edge-Fog Nakkar et al. (2020) Broadcast Protocol Medical Emergency X X X
Amanlou et al. (2021) Semi-centralized Key Enhance Security X X X
Santos et al. (2019) . - -
T HTTP web Appl M X X X
- Tuli et al. (2019) RES web service pplication Migration
508 Alharbi et al. (2017) Challenge-response Auth. Security X X X
Ogundoyin and Kamil (2021) AKA Protocol Peer-to-peer Authentication X X X
Cloud-Edge-F Federated
R O?llis) §e-r0g A?lt::;;cation Proxy Based Approach Third-party Authentication v v v
cloud, edge, and fog. Our proposed universal federator is original 2.5.2. Integrity

because although it does not propose a novel protocol or try to modify
existing protocols, it glues the existing protocols together through a
novel federator. Also, the proposed federator is not limited to a 1-1
mapping of providers or protocols, but rather provides multiple options
and considers 16 scenarios among cloud, edge, and fog while providing
multiple protocols support and transparency. We did not find any
similar solution in related works, which makes our design novel.

2.4. Threat model

In order to simplify the problem at hand, we make certain assump-
tions. Specifically, we assume that the cloud, edge, and fog service
providers involved in the system are diligently maintained and secured
by their respective service providers and provisioning of their security
is out of the scope of this work. These assumptions allow us to focus
our analysis on other aspects of our designed federation system without
considering potential vulnerabilities within those service providers.
Therefore, the proposed federator is the vulnerable point in all 16
scenarios. The communication between the service providers and the
federator is also considered to be vulnerable, and the federator mapping
table can be read by an attacker. The attackers can also play replay
attacks, MITM attacks, and data leakage attacks on the federator.

2.5. Security requirements

In light of the threats introduced in the previous subsection, some
security requirements must be met to ensure system security. The basic
security requirements are confidentiality and integrity for the commu-
nication between involved entities, i.e., user, home service provider,
federator, and foreign service provider. We also incorporate security
requirements, such as replay resistance, data manipulation and data
leakage resistance, impersonation resistance, and Man in the Middle
(MITM) attack resistance.

2.5.1. Confidentiality

Confidentiality is the security property that limits access to infor-
mation. In our case, the flow of information between the user and
the home and foreign service providers, as well as the user and the
federator, must be confidential. Also, the confidentiality of information
between different service providers must be ensured.

This security property ensures that the information is accurate
and trustworthy. In our case, the integrity of the information flowing
between the involved parties must be ensured.

2.5.3. Replay resistance

This security property ensures that if an attacker captures a packet,
it should not be able to forward it later to threaten security. In our
proposed scheme, we must ensure that the home and foreign service
providers detect and discard replayed messages.

2.5.4. MITM resistance

Man in the Middle attacks are usually carried out via active eaves-
dropping, where a malicious user can monitor the communication
between legal users. Our proposed schemes must ensure that the ma-
licious users cannot modify the exchanged messages and send them to
the federator later.

2.5.5. Data manipulation resistance

Data manipulation is an attack where a malicious user can alter or
modify critical and essential data, which might be the authentication
token in our case. Such data manipulation is harmful to the service
providers. Therefore, our system should be able to resist such attacks.

2.5.6. Data leakage resistance

Data leakage is unauthorized data transmission from an entity to
outside a trusted domain. In our case, the data stored inside the
federator can be leaked to the attackers. The security of that data must
be ensured.

2.5.7. Impersonation resistance

An impersonation attack is an attack in which the attackers pose as
a known or trusted person or entity. In our case, the attackers can pose
as the trusted federator and can cause harm to the service providers.

A. Ali et al.

Table 2
All possible Scenarios.

Journal of Network and Computer Applications 229 (2024) 103922

Foreign

Home Cloud Edge Fog Fog-802.1x

Cloud Cloud-Cloud Cloud-Edge Cloud-Fog Cloud-Fog 802.1x
Edge Edge-Cloud Edge-Edge Edge-Fog Edge-Fog 802.1x

Fog Fog-Cloud Fog-Edge Fog-Fog Fog-Fog 802.1x
Fog-802.1x Fog-802.1x-Cloud Fog-802.1x-Edge Fog-802.1x-Fog Fog-802.1x-Fog-802.1x

3. Problem statement

We assume there are different computing paradigms and a user has
an account on one of these, which can be a cloud, edge, or fog. The
home service provider is the one which already provides services to
the user and the user has an account there. We assume that the user
moves from place to place, gets out of the range of the home service
provider, and needs to connect to another service provider. We call
this the foreign service provider, which has to provide a service to the
user. In the case of a user that keeps its place, we assume that the
user has different applications with different requirements and needs
services from different service providers. The foreign service provider
must be able to provide services to the user without creating a new
account. Hence, there is a need for communication between the home
and foreign service providers. These service providers may or may not
be using the same protocols, as they may or may not belong to the
same computing paradigm. Therefore, there is a need for a mechanism
that provides third-party authentication for a user, among foreign and
home service providers, with low latency while keeping the process
transparent, standard compliant, and secure. The problem statement is
as follows:

Given: Multiple computing paradigms using multiple protocols such
as EPS-AKA, OIDC, and 802.1x.

Objective: To provide third-party authentication to the users of
different computing paradigms.

Constraints: Transparency, Protocol translation and Security.

Assumptions: The need for one account service everywhere is a must,
and service providers will come together to increase their capability
and capacity.

The home and foreign service providers may be cloud, edge, and fog
using different protocols. OIDC is one of the most established protocols
in the cloud computing industry (Naik and Jenkins, 2016) that enables
users to authenticate and authorize themselves to access APIs, protected
data, and other resources on different websites. It provides identity fed-
eration and single sign-on (SSO) capabilities, which are ideal for cloud
services that need to manage numerous user identities across various
platforms. Therefore, we assume that the cloud will use OIDC protocol.
We assume that the edge will use EPS-AKA as it is used primarily in
cellular LTE networks (Choudhruy, 2012), leveraging SIM card-based
credentials, which makes it well-suited for edge devices that often
include mobile or cellular technologies. Due to the widespread adoption
of OIDC in fog computing (Navas and Beltran, 2019) and usage of
802.1x in fog computing for port-based Media Access Control (OpenFog
Consortium et al., 2017), we assume that the fog will use OIDC and
802.1x.

Therefore, 16 scenarios are possible as we consider three different
computing paradigms with different protocols, which can either be on
the home or the foreign side, as shown in Table 2. For instance, one
out of 16 possible scenarios is the Edge-Fog scenario, where an edge
is the home service provider using EPS-AKA, and fog is the foreign
service provider using OIDC. The fog service provider, using the OIDC
authentication protocol, contains the service to be accessed by the user.
The edge service provider, using EPS-AKA, is the home service provider
with the user’s credentials. The objective here is to allow a user, a
subscriber of the edge, to access foreign fog’s services. In the bigger
picture, a cloud can be a home service provider, with four possible
combinations cloud, edge, fog, and fog using 802.1x at the foreign

sides. Similarly, edge, fog, and fog-802.1x can also be the home service
providers. Hence, 16 scenarios are possible in this federation.

Certain issues need to be solved to realize these 16 scenarios: (1)
Third-party authentication for a user that needs to access the services
of different providers using its home credentials and (2) Intermediate
communication: an entity that resides between the services providers
and provides a way for communication between them. The intermedi-
ary must also consider the authentication protocols used in cloud, edge,
and fog, like OIDC, 802.1x, and EPS-AKA. The intermediary must be
designed in accordance with the authentication components, such as
the user, the relying party (RP), the OpenID provider (IdP or OP), the
supplicant, the authenticator, the RADIUS server, the UE, the MME,
and the HSS. The message flows of EPS-AKA, OIDC, and 802.1x are
different from each other, which causes a mismatch for third-party
authentication. Therefore, there is a need for an appropriate entity that
provides mapping of messages between these protocols.

4. Proposed universal federator

To solve the problem identified and described in the previous
section, we propose a universal federator as the communication inter-
mediary. The federator supports multiple authentication protocols used
by cloud, edge, and fog. The proposed federator sits between the cloud,
edge, and fog service providers and can be implemented in the real
network infrastructure in the following ways:

» Federation as a Service (FaaS): The federator can be deployed
by one of the major cloud providers that are involved in the
federation. They can offer it as a service, such as “Federation as
a Service” (FaaS).

Cellular Network VNF: The federator can also be deployed in one
of the cellular networks involved in the federation. The federation
unit can be implemented as a virtual network function (VNF) that
will facilitate scalability.

Third-party Vendor: The proposed federation unit can also be
deployed by a third-party vendor, which can act as a neutral
intermediary among service providers.

The primary design idea of the federator is transparency. Trans-
parency means no change in the existing infrastructure or protocols.
There could be three possible ways to address the problem identified
and described in the previous section: (1) propose a novel protocol, (2)
modify existing protocols. (3) build a solution on existing protocols.
We chose the third option as it is the most suitable for the service
providers and maintains transparency. The federator’s transparency is
necessary to avoid any modifications in the existing infrastructures and
authentication protocols used by the cloud, edge, and fog. The federa-
tor’s transparency is achieved with the help of a controller and several
modules that play the virtual counterparts’ roles in communicating
with the entities involved in the authentication protocols. The primary
design ideas of the federator are:

» The universal federator is kept transparent so that there is no
modification required in the protocols and infrastructure of the
service providers.

The federator has virtual counterparts, according to the involved
authentication protocols, so that it could play different roles,
depending upon the involved entities in the authentication pro-
tocols.

There is pairwise statefulness in the federator so that it can handle
multiple third-party authentications.

A. Ali et al.

Journal of Network and Computer Applications 229 (2024) 103922

Foreign

Controller

vAuthentication Server

Cloud

Foreign

The Universal Federator

Fog

Fig. 1. The universal federator architecture.

Table 3
Federator roles against corresponding entities.
Proxy Role Involved Protocol Corresponding Entity Paradigm
VvHSS EPS-AKA VMME or foreign MME Edge
vMME EPS-AKA vHSS or home HSS Edge
Identity Provider OIDC Relying Party in Cloud or Fog Cloud, Fog
Relying Party OIDC Identity Provider in Cloud or Fog Cloud, Fog
vUser (Client) OIDC User Info endpoint in Cloud or Fog Cloud, Fog
vUE EPS-AKA MME of home Edge Edge
vAuthentication Server 802.1x Foreign Fog (Authenticator) Fog
Table 4
Detailed roles for each scenario.
Home Foreign Cloud Edge Fog Fog-802.1x
Cloud vIdP vHSS vidP VAS
VvRP vUser VvRP vUser
vidP vHSS vidP VAS
Edge
vUE vMME vUE vUE
Fog vidP vHSS vidP VAS
vUser, VRP vUser vUser, VRP vUser
Fog-802.1x vidP vHSS vidP VAS
vUser vUser vUser vUser

4.1. Architecture

Our universal federator serves as a central intermediary for cloud,
edge, and fog layers, streamlining communications between these plat-
forms. It employs different virtual modules that replicate functions
of key authentication protocols like OIDC, EPS-AKA, and 802.1x and
manage interactions between home and foreign providers. Our federa-
tor supports various user credentials depending on the authentication
protocol used. For OIDC, it accepts ID Tokens, User IDs, and Pass-
words, facilitating secure and federated identity management. In the
context of 802.1x, it uses User IDs and Passwords to ensure network
access control. The federator handles ID Tokens and SIM Credentials
for EPS-AKA, leveraging mobile network authentication methods to
secure edge devices. This multi-protocol support enables the federator
to provide flexible and robust authentication across cloud, edge, and
fog environments.

In OIDC, user-related claims are communicated between the OpenID
Provider (OP) and the Relying Party (RP). In 3GPP EPS-AKA, claims
involve user identity and authentication details like the IMSI, authenti-
cation vectors, RAND, and AUTN to secure communications. In 802.1x,
the supplicant and RADIUS protocol facilitate claim translation. Our
authentication proxy is adept at managing and translating claims for
these protocols, ensuring robust and seamless authentication across
different systems.

The universal federator sits between the cloud, edge, and fog service
providers, as shown in Fig. 1. The federator is designed while consider-
ing the entities involved in OIDC, EPS-AKA, and 802.1x. The modules

inside the federator are selected to communicate transparently with the
service providers on home and foreign sides using different authentica-
tion protocols. Hence, the federator contains the virtual user (vUser),
the virtual relying party (VRP), the virtual User Equipment (vUE), and
the virtual Mobility Management Entity (vMME) to communicate with
the home service providers. The virtual OpenID provider (vIdP), the
virtual authentication server (vAS), and the virtual Home Subscriber
Server (VHSS) to communicate with the foreign service providers. The
federator also consists of a controller that controls the modules and
provides a way for communication between these modules and service
providers. The federator is connected to cloud, edge, and fog via cloud
relay, edge relay, and fog relay.

The modules deployed inside the federator are the virtual entities
of the OIDC, 802.1x, and EPS-AKA authentication protocols. Depending
upon the authentication protocols at the home and foreign side, the
federator activates different components, as shown in Table 3. The
controller selects and coordinates between these virtual components.
A detailed breakdown of the roles played by the federator in all 16
scenarios is shown in Table 4. The proposed federator not only needs
to provide transparent third-party authentication but also needs to be
secure. Therefore, the federator makes use of PKI for key management,
generates unique session keys for key freshness and secrecy, uses nonce
for replay provision stores the information in an encrypted manner.
The details of security provisions are provided in Section 7.3. In the
following subsection, we will describe the logic flow for the federator
in detail.

A. Ali et al.

Connect to vHss
& store edge
and mapping info

Connect to vidP
& store cloud and
mapping info

Which
Relay?

Check
Protocol

Connect to vAS
& store fog and
mapping info

Connect to vidP
& store fog and
mapping info

(a) The initialization phase

Journal of Network and Computer Applications 229 (2024) 103922

Activate VAS &
provide login
options to UE

Provide login
options to the
UE

Message
?

passing client_id

Activate vidP &

wait for UE
login request
Login
Request
?
yes
Provide logion
options to UE
CalloipDC

cloud/fog Sub-
routine

Call 802.1x fog Call 3GPP edge

Sub-routine Sub-routine

(b) The operational phase

Fig. 2. Federator initialization and operation.

4.2. Logic flow

4.2.1. Initialization phase

As shown in Fig. 2(a), the initialization phase connects the service
providers with the universal federator. The initialization phase starts by
receiving the connection requests coming from the relays. The federator
needs to check which relay it is coming from. The next step is to check
the incoming message to find the source. The source information is
matched with the stored information about the relays, and the output
is either cloud, edge, or fog relay. If the output is the cloud relay, the
federator needs to perform specific actions which include; (i) storing
the cloud information, (ii) providing cloud connection to the vIdP
module, and (iii) storing the related information for mapping purposes.

Once the information is stored, the federator waits for other con-
nection requests. If the federator receives the request as input, it checks
if it is from a cloud relay and if it is from a cloud relay, the federator
repeats the process; otherwise, the process is finished. If the output is an
edge relay, the federator needs to perform specific actions; (i) store the
edge information, (ii) provide cloud connection to the vHSS and vMME
module, and (iii) store the related information for mapping purposes.
Once the information is stored, the federator waits for other connection
requests. If the federator receives the request as input, it checks if it is
from an edge relay and if it is from an edge relay, the federator repeats
the process; otherwise, the process is finished.

The federator needs to check the protocol to see if the output is a
fog relay. The incoming request is matched with the existing supported
protocols. If it matches with the OIDC protocol, the federator needs to
perform certain actions; (i) store the fog information, (ii) provide fog
connection to the vIdP module, and (iii) store the related information
for mapping purposes. Once the information is stored, the federator
waits for other connection requests. If the federator receives the request
as input, it checks if it is from a fog relay, and if yes, it repeats the
process. Otherwise, the process is finished. If the output is 802.1x
protocol, the federator needs to perform certain actions; (i) store the
fog information, (ii) provide fog connection to the vAS module, and (iii)
store the related information for mapping purposes. The initialization
phase creates a lookup table, which does not need to be updated
frequently, as it will only be updated when a new service provider joins
the federation.

4.2.2. Operational phase

Once the service providers have connected with the federator through
the initialization phase, the operational phase starts, as shown in
Fig. 2(b). The federator receives an incoming message from one of the

relays. The message is fed as input to the federator, and the federator
needs to respond differently, depending upon different messages. The
federator checks the incoming message from the relay and matches
it with the existing entries for possible matches. If the incoming
message matches the RADIUS Access request, the federator needs to
perform certain actions; (i) activate the vAS to receive the request and
(ii) provide login options to the UE. The UE response is fed to the
subroutine “User Auth for 802.1x”.

On the other hand, if the incoming message matches the UE login re-
quest, the federator provides login options to the UE, and the response
is fed to the subroutine: “User Auth for 3GPP Edge”. If the incoming
message matches with the Auth Request passing client_id, the federator
activates the vIdP to receive the message and puts it into the wait state.
The federator waits for the UE login request, and once the UE sends the
login request, the federator provides login options to the UE and feeds
the UE response to the subroutine: “User Auth for Cloud/Fog OIDC”. If
no response is received while the federator is in this step, the process
is halted. The mentioned subroutines are how users are authenticated
with foreign service providers using home credentials.

4.3. Forwarding table

The federator builds the forwarding Table 5 based on the federator
logic flow, as it needs to decide which components need to be activated
and what mappings must be done for a particular scenario. The feder-
ator logic flow starts by examining the traffic coming from the relays.
The federator needs to find out which is the home relay and which is
the foreign relay. If the home relay is fog, the controller needs to find
out whether the fog protocol is OIDC. If the home relay is fog and the
fog protocol is not OIDC, vUser is activated on the home side of the
federator. If the home relay is cloud, vUser, and vRP are activated on
the home side of the federator, depending on the foreign relay.

If the home relay is edge, vVMME, and VvUE are activated on the home
side of the federator, depending upon the foreign relay. The federator
controller also needs to find out the foreign relay and if the foreign
relay is an edge relay, vHSS is activated on the foreign side of the
federator. If the foreign relay is a cloud relay, vIdP is activated on the
foreign side. If the foreign relay is a fog relay, the federator controller
needs to find out whether OIDC is used in the fog. If OIDC is used,
vIdP is activated, and if not, vAS is activated on the foreign side of
the federator. In the case of the edge—cloud scenario, the universal
federator will select the VUE as the module on the home side and vIdP
as the module on the foreign side. The federator will need to map
the 3GPP EPS-AKA and OIDC protocols by translating the “Login with

A. Ali et al. Journal of Network and Computer Applications 229 (2024) 103922
Table 5
The Forwarding Table.
Home Destination Home Module Foreign Module Mapping from Mapping to
Cloud VRP vidP Auth Request passing client_id from SP Auth request passing client id as RP
Cloud Edge vUser vHSS Auth Request (IMSI) Login with IMSI
Fog-OIDC vRP vIdP Auth Request passing client_id from SP Auth request passing client_id as RP
Fog-802.1x vUser VvAS RADIUS Access Request Login Request
Cloud vUE vidP Login with IMSI Auth Request (IMSI)
Edee Edge vMME vHSS Auth Request (IMSI) Auth Request (IMSI) as MME
g Fog-OIDC vUE vIdP Login with IMSI Auth Request (IMSI)
Fog-802.1x vUE VAS Login with IMSI Auth Request (IMSI)
Cloud vUser+RP vIdP Auth Request passing client_id from SP Auth request passing client_id as RP
Fog-OIDC Edge vUser vHSS Auth Request (IMSI) Login with IMSI
s Fog-OIDC vUser+RP vidP Auth Request passing client_id from SP Login + Auth Request passing client ID as RP
Fog-802.1x vUser VvAS RADIUS Access Request Login Request
Cloud vUser vIdP Auth Request passing client_id from SP EAPOL start request
Fog-802.1x Edge vUser vHSS Auth Request (IMSI) EAPOL start request
s) Fog-OIDC vUser vIdP Auth Request passing client_id from SP EAPOL start request
Fog-802.1x vUser VAS RADIUS Access Request EAPOL start request

IMSI” message to “Auth Request (IMSI)” to communicate with the edge.
The same procedure will be followed according to Table 5 for the rest
of the scenarios.

4.4. Message flow diagrams

This section explains the message flow for the most probable sce-
nario out of 16 scenarios. We choose one of the 16 scenarios to explain
the message flow. Depending upon the scenario, the other 15 message
flows follow the same pattern but with different protocols and different
federator components.

4.4.1. Edge—cloud scenario

Fig. 3 illustrates the universal federator message flow for the sce-
nario where the home provider is an edge and the foreign provider is
a cloud (Edge-Cloud scenario). The message flow for the Edge-Cloud
scenario consists of three stages: request stage, response stage, and
confirmation stage.

Stage 1—Request Stage: The UE initially sends the service request to
the service provider (foreign cloud). The service provider redirects the
UE to the federator controller via the cloud relay, as the UE is not the
cloud’s subscriber. The service provider also initiates the OIDC message
“Auth Request passing client_ id” to the virtual IdP component of the
federator via the federator controller and the cloud relay. The federator
controller provides identity service to the UE with multiple options.
Here, the UE chooses the authentication service provided by a mobile
network provider. The UE’s IMSI stored in the USIM is sent as a user
ID to the federator controller. The federator controller, after receiving
the “Auth Request passing client_id” from the foreign cloud and “Login
via Edge + IMSI” from the UE, activates the virtual IdP and the
virtual UE components of the federator. The federator controller does
the necessary mapping according to Table 5 and passes the mapped
message to the virtual UE component, which forwards the IMSI to the
home MME via the federator controller and the edge relay. The MME
processes the message and sends the processed message to the HSS.

Stage 2—Response Stage: The HSS receives the authentication re-
quest, calculates the authentication response, and sends it back to
the MME, which keeps the XRES and forwards the challenge to the
virtual UE component in the universal federator via the edge relay
and the federator controller. The federator controller then forwards the
challenge to the original UE via the cloud relay. The UE uses the key,
calculates the RES, and sends it to the virtual UE via the cloud relay
and the federator controller. Consequently, the virtual UE forwards the
RES, via the federator controller and the edge relay, to the MME to
authenticate the UE.

Stage 3—Confirmation Stage: Once the MME checks that the RES
equals the XRES, it sends a 200 OK message to the vUE via edge relay

and the federator controller. The federator controller then instructs the
vIdP to authenticate the end user and sends ID_token to the foreign
cloud (RP). Then the cloud service provider authenticates the user by
validating the authentication token. The cloud service provider permits
the user to access its services upon token validation.

5. Implementation

In order to provide a comprehensive solution to the authentication
problem in multiple scenarios discussed previously, we proposed to
design a universal federator that can federate different service providers
and support multiple protocols. Our proposed federator is transparent
and accommodates the existing protocol structures with the help of
other virtual counterparts inside it. These virtual counterparts demon-
strate different roles while communicating with the service providers,
which include: IdP, UE, HSS, RP, user, AAA, and supplicant. Our fed-
erator also provides pairing between the virtual counterparts to make
the federator fit for both the home and foreign sides. In this section,
we talk about the implementation details of our proposed federator.

5.1. Prototype architecture

Our federator’s design aligns with the architectural principles of
OIDC, EPS-AKA, and 802.1x authentication protocols, encompassing
a central controller and several modular components. These mod-
ules comprise a virtual Identity Provider (vIdP), virtual User Equip-
ment (VUE), virtual Home Subscriber Server (vHSS), virtual Mobil-
ity Management Entity (vMME), virtual Relying Party (vRP), virtual
User (vUser or vSupplicant) and virtual Authentication Server (VAAA
or vAS). This selection ensures that our federator integrates seam-
lessly with established authentication protocols, facilitating transparent
communication with the necessary entities. The federator dynamically
orchestrates these modules, selecting the appropriate components for
each authentication scenario. For instance, when fog-OIDC acts on
the home side, it anticipates authentication requests from an RP and
communication with the user for authentication purposes. In such
cases, the federator will employ a vUser and vRP to engage with
the home vIdP. In foreign Edge scenarios, the VHSS communicates
with the vUser/vMME. The vIdP facilitates authentication in cloud
or fog-OIDC environments abroad. For foreign Fog-802.1x scenarios,
the federator integrates with a RADIUS server (VAAA). Additionally,
for edge computing scenarios, we utilize the Open Air Interface (OAI)
to implement 4G network elements, including User Equipment (UE)
and Edge components (HSS, MME, and eNB), ensuring comprehensive
coverage and versatility across diverse authentication contexts.

A. Ali et al.

Journal of Network and Computer Applications 229 (2024) 103922

Foreign‘ Cloud Cloud Uni\'grsal Proxy Edge Home Edge
Service Relay m‘ Relay Home Home
UE Provider elay 1P | (vUE] ~ e'ay MME HSS
— Login Request
Auth Request |
Redirect to PC Passing client_id "
i - Wait for
Login Request Proxy
Login via Cloud, Edge or Fog insteucion
Login via Edge + IMSI
Request
Stage Activate:
1dP, vUE
Mappi Auth Request
(IMST)
Auth Request
(IMST)
. A‘*“‘h Auth Auth Res
\'("!}:Tllen‘g:, = Challenge AUTNJ||[RAND
. A AEENR AUTN|IRAND XRES, Koo
Rc‘sponsc Verify AUTN Challenge
Stage Compute RES AUTN|[RAND

Auth challenge

Auth challenge RES
RES
Compare RES and
XRES
200 OK
End
Authenticate Authenticate & Send
Confirmation| End User Token
Satge Id_token

Session

Fig. 3. Message flow for edge-to-cloud.

Universal Proxy

i User (UE)

Foreign Service Provider ~ Switch

User Credentials

Proxy |
Controller

Swiich Home Service Provider

vSupplicant /

Fig. 4. Experiment testbed.

5.2. Experiment testbed

Our testing environment was set up using four personal computers
(PCs) and two Cisco 2960X switches, as depicted in the referenced in
Fig. 4. One switch facilitated operations on the home side, while the
other supported activities on the foreign side. The PCs were equipped
with Intel Core i7-10700F CPUs at 2.90 GHz and 32 GB of RAM and
ran Ubuntu 16.04 OS. The configuration was as follows:

+ The first PC functioned as the foreign service provider, hosting
the foreign 802.1x authentication server (AAA) and the foreign
OpenID Connect Relying Party (OIDC RP). This machine also
supported the 3GPP network components for edge computing
through the Open Air Interface (OAI).

The second PC was the home service provider, incorporating the
home 802.1x AAA and the home OIDC Identity Provider (IdP).
The third PC was dedicated to the 802.1x supplicant and the OIDC
user, simulating client-side operations.

The fourth PC was designated for the universal federator, central
to our 16 federation scenarios. It functioned as an intermediary,
orchestrating communication and message transfer between the
home and foreign entities.

This setup allowed us to comprehensively evaluate the federa-
tor’s performance across diverse federation scenarios, ensuring robust
testing of its capabilities in a controlled environment.

The open-source authentication packages we used in our federator
are as follows: OIDC was deployed by using two different open-source
OIDC implementations. We used AuthLib and Django OIDC Provider to
deploy the OIDC components (RP, IdP, and User). The virtual suppli-
cant and 802.1x supplicant were implemented with the WPA supplicant
daemon so that we could deploy the users for 802.1x. The Authentica-
tion servers for 802.1x were deployed with FreeRADIUS, which is the
most popular and widely deployed RADIUS server. Edge components
were deployed by using the OpenAirInterface (OAI) cellular network.
The user equipment(UE) in edge scenarios was implemented in Python
and C. We have also uploaded our testbed implementation on GitHub
(https://github.com/ericliujian/3rd-Party-Authenticaion).

6. Results and evaluation

Initially, our evaluation focuses on assessing authentication latency,
wherein we document the time required for third-party authentication
across 16 distinct scenarios. This involves comparing the authenti-
cation durations to discern patterns and underlying causes for the
observed variances. Subsequently, we dissect the latency contributions
for each scenario, categorizing them by the user, service provider,
and the federator itself. Further, we conduct a comprehensive bottle-
neck analysis for these scenarios to determine whether the federator
introduces any performance constraints. This step includes examining
how authentication times differ when using federator-based authenti-
cation versus direct authentication methods, providing insights into the
federator’s efficiency. Lastly, we assess the federator’s scalability by
incrementally increasing network traffic. This experiment is designed
to understand how heightened demand affects authentication latency,
offering a clear picture of the federator’s performance under varying
loads. This multi-faceted approach allows us to thoroughly evaluate the
federator’s capabilities and identify areas for optimization.

6.1. Authentication latency analysis

6.1.1. Authentication time for all scenarios

Fig. 5 presents the authentication duration across 16 different sce-
narios, revealing that the Fog 802.1x-Fog 802.1x setup incurs the
longest authentication time at (AT, = 3.83 s) seconds, while the
Cloud-Cloud configuration is the quickest at (AT,,, = 1.19 s) seconds.

https://github.com/ericliujian/3rd-Party-Authenticaion

A. Ali et al.

Latency of all scenarios
4.5

4 3825

3.357 3.472

w
«

3.257

w

)
©°
2
o
g
U
o
z
§25
K o7k 2.116
c 2 2 1.875 1934 .08
% 1738 a0 1647
8 1.427 1385
1.
£15 e 1193
@
£ 1
2
0.5
0
IS P . LTy N S P GRS R I S
& o '\,&bq’ & (/0\0 o 0&8" & °9\9 d\o ngb" 9 b\° & b’éo
¥ Y F O R E g Y PSS
& &S TP T T T

Fig. 5. Latency for all scenarios.

On average, the authentication time across all scenarios is 2.12 s
(AT,,0)- The extended duration in the Fog 802.1x-Fog 802.1x scenario
is attributed to the necessity of multiple Extensible Authentication Pro-
tocol (EAP) authentications. Specifically, when 802.1x authentication
occurs on the home side, the switch must activate the connection port
and execute a series of pre-configured setups, including the application
of Access Control Lists (ACLs). On the foreign side, the process involves
two stages of 802.1x authentication—initially granting restricted access
and directing to a captive portal, followed by a second authentication
that provides full network access. This results in three authentication
steps for the Fog 802.1x-Fog 802.1x scenario, explaining its longer
duration than others. Conversely, the Cloud-Cloud scenario achieves
the shortest time by merely initiating the virtual identity provider and
relying party, which exchange client_ID and ID_token for activation.

6.1.2. Latency breakdown by entities

In our analysis, we deconstructed the authentication process facil-
itated by the federator into its constituent entities to identify which
component accounts for the most significant fraction of the overall
authentication time. Ilustrated in Fig. 6, the data reveals that the
foreign switch is responsible for most of the authentication duration,
represented by the yellow stacked column in the graph. Our calcula-
tions found that the federator’s share of the total authentication time
varies from 4.07% to 51.8%, equating to a time range of 0.156 s to
0.74 s. Notably, the federator’s impact on the authentication timeline
is more pronounced in scenarios involving the OpenID Connect (OIDC)
protocol, constituting 13.5% to 51.8% of the authentication time. This
increase is attributed to the OIDC protocol’s inherent need for multiple
redirections between the virtual Relying Party (vVRP) and virtual User
(vUser), which inherently extends the authentication process.

6.1.3. Latency breakdown by protocols

In our subsequent analysis, we segmented the authentication du-
ration according to the specific protocols engaged. Fig. 7 shows that
the 802.1x protocol accounted for a significantly longer portion of
the authentication time compared to other protocols. This extended
duration is primarily due to the 802.1x protocol’s requirement for an
additional RADIUS server, which serves as a security gatekeeper for the
network. Upon a user’s attempt to connect to the network, the RADIUS
server authenticates the user and grants the necessary authorizations.
Additionally, when edge computing elements are incorporated, the
delay in edge scenarios can often be traced back to the User Equipment
(UE). The UE must establish a connection with Mobile Edge Computing
(MEC) components to gain internet access, which can introduce a
bottleneck, particularly regarding network access and data transmission
efficiency.

10

Journal of Network and Computer Applications 229 (2024) 103922

4.5 Latency breakdown by entities
m User 11 Foreign Provider "~ Home Provider . Foreign Switch = Home Switch * Proxy Communication
4 a07%
I 14.2%
g3 s 0 18.8%
3 3 :
>
H
22.5
3 _ 17.7%
c 19.5¢ :
s 2 39:5% o 21.2% oo
E e 2 43.6%
1.5 50.4% g1 goc : = o0
o ped 501%
i ‘ & P
" 0 0L
" fddluolllzogug
&+ & e & L R SIS C
6“'} 00\0 <>°° gf"b% ‘b&'} 0\0 (}°° d&% 19"' 80\0 bf"b% S}oo
¥ O F KX F XSS
%&1\ 0\0\00\&956%500000000
Fig. 6. Latency breakdown by entities.
Cloud-Cloud 0.289 o ™ Foreign Edge # Foreign Cloud Foreign OIDC
0728w Foreign 802.1x \ Home 802.1x Home 0IDC
Cloud-Edge 0.201
— 0718 Il Home Edge N Home Cloud & Proxy
Cloud-0IDC 0387
0598
Cloud-802.1x * 2336
1334
Edge-Edge .
Edge-Cloud .
Edge-0IDC 1236
Edge-802.1x 2.617
OIDC-Edge
0IDC-Cloud
0IDC-0IDC
0IDC-802.1x 2.622
802.1x-Edge
802.1x-Cloud -~
802.1x-0IDC -~

802.1x-802.1x

Fig. 7. Latency breakdown by protocols.

6.1.4. Bottleneck analysis

Fig. 6 reveals that in scenarios involving 802.1x, the federator
contributes to only 4.07-24.6% of the total authentication time. The
primary bottleneck in these cases is identified as the Cisco switch on
both the home and foreign sides. The delay is attributed to the switch’s
implementation of the Spanning Tree Protocol (STP), which is responsi-
ble for establishing a new network path for the newly connected device.
This process occurs before issuing the final Extensible Authentication
Protocol (EAP) success message. Such findings underscore that the
federator is not the bottleneck’s source. Instead, our analysis points
to the network equipment, specifically the switch’s handling of new
connections through STP, as the cause of the delay and this delay is
inevitable.

6.1.5. Authentication with vs. without proposed federator

Fig. 8 compares authentication times, highlighting the differences
between utilizing our proposed federator and a scenario without it.
Without the federator in place, users are required to maintain multiple
accounts across various service providers to achieve authentication,
necessitating separate accounts for both home and foreign services.
Consequently, this approach compels users to manage dual accounts
and undergo two authentication processes. While it is true that intro-
ducing our universal federator increases the overall time required for
the authentication process — attributable to the time the federator con-
troller takes to initiate modules and facilitate communication among
them - the incremental time delay is deemed reasonable. The primary
benefit of employing the federator, which is eliminating the need
for a secondary account at the foreign service provider, significantly
outweighs the slightly increasing authentication time, offering a more
streamlined and efficient user experience.

A. Ali et al.

Authentication delay with vs. without proxy

4.5
[
% .
4 8 — 5 »: Universal Proxy
3 § 8 3 #802.1x
==,3.5 § S -;
F g i > oIpc
238 i
E.z 2 . i EPS-AKA
§25 P 3
g i3 8 g i ; PR
s 2§ °© < d 08 B o8 &
K] e e b A 5
® o e @ kY] I H w]] : "
S5 8 B & B &8 & & i i 8 & &
s I/ » = - - E o) [+ S - @
] 2 = H K 3 ° H ° H f o o E o Ho
s 1 @ Bk 2 i3 i e B 9 i3 i3
R B O LR N jo gl gl
05 & s H N N RN H 2 E'C'ﬂa
g 3 N N » H E H N Y N 8
A B N ENEEA FRR R R
N L > 2 > e nF > 9 3 >
& & $>°° S‘b% 0°° g/b% o ° $>°o ° f‘},q, <>°°
& N & & X & & 3 \oob &
& &S S S AR ¢ &
Fig. 8. Authentication time with vs. without our federator.
8:
Authentication latency under different proxy load (1)
No Requests/Second
1 10K Requests/Second

20K Requests/Second
30K Requests/Second
40K Requests/Second
W 50K Requests/Second

802.1x-802.1x 802.1x-OIDC 802.1x-Cloud 802.1x-Edge OIDC-802.1x OIDC-OIDC OIDC-Cloud OIDC-Edge

Authentication Latency (seconds)
O R N WA B O N ®

YL LSS LSS Y
(Ll

i
Y/l
YL
(LLlld
SIS
SIS s

Fig. 9. Authentication time under different federator load (1).

6.2. Scalability testing

Beyond analyzing authentication latency, we delved into assessing
the scalability of our proposed federator, precisely its capacity to
efficiently handle an increasing volume of user requests. This scalability
evaluation involved modifying the traffic load directed towards the
federator, characterized by numerous connection requests per second.
By incrementally raising the traffic load, we aimed to observe and
document any corresponding changes in authentication latency. This
approach allowed us to gauge the federator’s robustness and adapt-
ability under varied operational demands, providing insights into its
performance under scenarios of heightened user activity.

To assess how our federator copes with varying traffic volumes, we
developed a script designed to simulate a range of request loads, from
10,000 to 50,000 requests per second. It is important to clarify that
this traffic pertains to the control plane, not the data plane. Hence,
we quantify the load in terms of authentication requests per second.
This metric reflects the federator’s capacity to accommodate a rising
number of new foreign user requests each second. We escalated the
load from zero to 50,000 requests per second and, as depicted in
our findings in Figs. 9 and 10, observed that the authentication time
increased by 61%-120% in response to a 500% increase in traffic. This
outcome convincingly demonstrates the federator’s robustness, showing
its ability to manage significantly higher levels of network traffic with
a relatively modest increase in latency.

7. Discussion
7.1. Federator backup analysis

The federator serves as a central authentication system, providing
third-party authentication across cloud, edge, and fog layers. Despite
its robust design that ensures transparency and security, the federator
poses a potential risk as a single point of failure within the federated
network. If the federator fails, it could disrupt access for subscribers
attempting to use services across different computing domains. In this

11

Journal of Network and Computer Applications 229 (2024) 103922

No Requests/Second
® 10K Requests/Second

20K Requests/Second
\ 30K Requests/Second

Authentication latency under different proxy load (2)
40K Requests/Second
W 50K Requests/Second

Edge-802.1x Edge-OIDC Edge-Cloud Edge-Edge Cloud-802.1x Cloud-OIDC Cloud-Edge Cloud-Cloud

Authentication Latency (seconds)
O B N W A GO O N ®

LSS

SIS S
SIS

Vil
LSS
LSSy

SIS S
SIS

Fig. 10. Authentication time under different federator load (2).

subsection, we would like to introduce monitoring tools and high
availability (HA) to solve a particular single failure risk.

Our federator system enhances its operational reliability by uti-
lizing continuous monitoring, which tracks the system’s performance
in real-time through tools like Prometheus or DataDog. This ongoing
surveillance allows the system to immediately identify and diagnose
any operational glitches or inefficiencies. By detecting these issues
early, the system can proactively address them before they escalate into
more significant problems. This preemptive approach not only ensures
smoother operation but also minimizes downtime, thereby enhancing
overall system reliability and user satisfaction.

Apart from that, High availability (HA) can solve the problem of
a single point of failure. Common HA strategies, such as redundancy,
fail-over, fail-back, heartbeat, master-slave (Singh et al., 2012), can
be applied to the federator to solve the problem of the single point of
failure. In order to support HA, we could use redundancy and propose
a backup federator, which acts as the secondary federator and sits-and-
listens to the message exchange between the original federator and
service providers. The messages between the original federator and
the service providers are of two types; incoming and outgoing. The
three types of messages incoming from the foreign service providers
into the original federator are the “Auth Request passing client ID”,
“UE Login Request/Auth Request®, and “RADIUS Access request”. The
three types of messages outgoing from the original federator in response
to the incoming messages, are “ID_token”, “Auth Response*, and “RA-
DIUS Access request”. The backup federator works in a promiscuous
mode and listens to the incoming and outgoing messages exchanged
between the original federator and service providers. Suppose the
backup federator receives the incoming message and does not receive
the corresponding outgoing message within 2 * AT,,, seconds. In that
case, it assumes that the original federator has failed, takes the role
of the original federator, and handles all the incoming requests. Once
the original federator is fixed, it sends an “active_status” message to
the backup federator. The backup federator sends an “ACK” to the
original federator, handles the requests at hand, and goes back to the
promiscuous mode. After receiving the “ACK”, the original federator
starts to handle all the incoming requests.

7.2. Cost analysis

Implementing our proposed third-party federator indeed introduces
an initial increase in implementation costs for service providers. How-
ever, adopting such a federator can be a strategic investment for
companies focused on maximizing profitability in the long run. The
essence of a profitable service solution lies in its ability to cater to
a broader user base while minimizing operational costs. The Internet
of Things (IoT) is an excellent example of how this can benefit stake-
holders across cloud, fog, and edge computing domains due to the vast
amounts of data generated (Mejtoft, 2011). The raw data collected
by IoT devices does not need to be immediately transferred to cloud
environments for long-term storage or intensive processing (Bittencourt
et al., 2017). By leveraging edge and fog computing services, service
providers can significantly reduce their reliance on cloud resources,

A. Ali et al.

leading to cost savings and more efficient use of resources. This strategy
not only optimizes the handling of IoT data but also aligns with the
broader objective of delivering high-quality services to as many users
as possible at a reduced cost, ultimately enhancing service profitability
in the long term.

According to a report by Leishman (2021), about 40% of all help
desk requests are for password resets, a service that Forrester esti-
mates costs organizations an average of $70 per call (Simic, 2019).
Furthermore, with 68% of employees frequently toggling between as
many as ten apps every hour (Bennett, 2024), the efficiency losses and
administrative costs associated with multiple logins become even more
pronounced. By implementing our proposed one-account-for-all univer-
sal federator, organizations can significantly reduce the frequency of
password reset requests and streamline application access. Thus, our
solution presents a cost-saving value for service providers in the long
term. In today’s highly competitive market, the abundance of alter-
natives available to consumers means that any friction or complexity
encountered with the product could lead consumers to explore other
options (McKeown, 2023). Our proposed implementation can signifi-
cantly enhance user retention by simplifying the sign-up and login-in
process, thereby increasing the likelihood that users will consistently
choose the product.

7.3. Security analysis

In this section, we examine how the proposed federator provides
guarantees for the previously identified security requirements, and
explain how it defends against possible attacks.

7.3.1. Confidentiality and integrity

Confidentiality and integrity are two of the most important security
requirements. Confidentiality and Integrity must be ensured across all
stages of communication. Firstly, we divide the message flow into four
possible stages; communication between the UE and the foreign service
provider (S1), communication between the foreign service provider
and federator (S2), federator (S3), and communication between the
federator and home service provider (S4). The proposed solution must
support confidentiality and integrity across these four stages.

S1. As we tested our proposed federator for 3GPP cellular networks,
cloud, and fog, the security features provided by the cloud, fog, and
3GPP cellular apply to our solution as well. The communication be-
tween the UE and the foreign service provider is made secure by the
use of existing protocols for cloud, edge, and fog.

$2. Stage S2 involves the communication between the foreign ser-
vice provider and the federator. This communication must ensure
confidentiality and integrity. Confidentiality in this stage is provided
through TLS.

$3. Stage S3 involves the information that travels through and is
saved inside the federator. All the information is transferred to the
federator in an encrypted manner, and the information is also stored
inside the federator in an encrypted manner. Therefore, if an adversary
gets hold of the user’s credentials, it will not be able to read the stored
information.

S4. Stage S4 involves the communication between the federator
and the home service provider. This communication must ensure con-
fidentiality and integrity. The confidentiality of the user’s credentials
information is via TLS protocol, as OIDC can use the TLS.

7.3.2. Forward secrecy

The proposed federator uses PKI for key management, and both the
user and servers can verify certificates, and initially, they can exchange
the session key via PKI. The session key only lasts for one particular
session, and unique session keys are freshly generated for each session
to ensure the forward secrecy. This ensures that if the hacker obtains
the most recent key, it is not able to guess the previous keys and is not
able to decrypt the other sessions.

12

Journal of Network and Computer Applications 229 (2024) 103922

7.3.3. Resistance to replay

In order to resist replay, we use a nonce. Nonce is a string value that
is used once for a specific use. If a user tries to replay a token provided
by one of the modules in the federator, it can be easily detected via
nonce. This ensures that the token is used once and cannot be replayed.

7.3.4. Resistance to MITM and data manipulation attacks

We have considered in our threat model that a user can be mali-
cious, or a third party can get hold of a user and perform malicious
activities through the legitimate user’s device. This can lead to data
manipulation attacks and man-in-the-middle attacks. All the other en-
tities in the system are trusted. The authentication protocols (OIDC,
EPS-AKA, and 802.1x) used in this work support the certificate-based
authentication and also make use of digital signatures (via TLS). There-
fore, MITM attacks and data manipulation attacks are mitigated both
on the home side and the foreign side.

7.3.5. Resistance to data leakage

There is a possibility of data leakage attacks and the authentication
protocols used in this work support certificate-based authentication,
make use of digital signatures (via TLS), and the information saved
inside the federator is kept in an encrypted fashion, which makes it
impossible for the attacker to get hold of the useful information inside
the federator.

7.3.6. Resistance to impersonation

In a typical TLS execution, the server provides the client with the
certificate during handshake. Thus, there is no need for the clients to
have access to the certificate beforehand. Once the client receives the
certificate, it can verify it via the certificate authority’s public key. If
the certificate is not valid, the client ends the communication. If the
certificate is verified, the client continues the communication with the
server. The user can easily access these public keys via the browser.
The use of certificates makes impersonation attacks impossible.

7.3.7. Compromised federator

In case the federator is compromised by an attacker, the end-to-end
trust between the user and multiple service providers will be broken.
The service providers will stop communicating with the federator in
such a case. The information inside the federator is stored in an
encrypted manner and hence, the attacker will not be able to get
valuable information, and the threat will be mitigated at the federator
and the attacker will not be allowed to infiltrate the cloud, edge, or fog
networks via using information obtained from the federator.

8. Conclusions and future research directions
8.1. Conclusions

Establishing a federator among cloud, edge, and fog computing
paradigms offers substantial capacity, capability, coverage, and cost-
efficiency benefits for end users and service providers. Our proposed
federator simplifies the authentication process significantly by elimi-
nating the need for users to create and manage separate accounts for
each network. For example, should users misplace their credentials for
one network, they can effortlessly authenticate using their credentials
from another. This breakthrough improves user experience and stands
as a pivotal innovation, streamlining access across the diverse land-
scape of distributed computing. From the service provider’s perspective,
our federator offers the potential to optimize resource utilization by
offloading specific tasks to edge or fog layers, thereby yielding bene-
fits in terms of resource efficiency. Our experimental findings affirm
the federator’s effectiveness, demonstrating acceptable authentication
times and robust scalability to manage a high volume of concurrent
requests. Moreover, our security assessment confirms that the feder-
ator meets stringent security standards, ensuring a secure federation

A. Ali et al.

across cloud, edge, and fog computing domains. These achievements
underscore the federator’s role as a critical enabler in the evolution of
distributed computing, promising a more interconnected, efficient, and
user-friendly computing environment.

8.2. Future research directions

In the future, our proposed federator can be extended to encompass
additional aspects such as authorization, resource allocation, Service
Level Agreements (SLAs), traffic offloading, and application mobil-
ity, thereby achieving a more comprehensive federation ecosystem.
Moreover, the scalability of the federator presents another research di-
rection for its deployment across multiple instances. While our current
setup involves a singular federator within the network, the complexity
of future network architectures may necessitate the introduction of
multiple federators. Another research direction could be the safety of
these federators in a multi-federator environment, where a Public Key
Infrastructure (PKI) could be employed for enhanced security measures.
This would involve each federator possessing unique public and private
keys, with the public keys being exchanged securely through PKI
certificates issued by a trusted certificate authority. The federator can
also be extended to involve more authentication protocols.

CRediT authorship contribution statement

Asad Ali: Writing — original draft, Methodology, Conceptualization.
Ying-Dar Lin: Supervision, Conceptualization. Jian Liu: Visualization,
Validation, Investigation. Chin-Tser Huang: Validation, Supervision.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Asad Ali, Ying-Dar Lin has patent #Communication system and method
for performing third-party authentication between home service end
and foreign service end (US11502987B2) issued to National Yang Ming
Chiao Tung University (NYCU). If there are other authors, they declare
that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.

Data availability
Data will be made available on request.

References

Alharbi, S., Rodriguez, P., Maharaja, R., Iyer, P., Subaschandrabose, N., Ye, Z.,
2017. Secure the internet of things with challenge response authentication in
fog computing. In: 2017 IEEE 36th International Performance Computing and
Communications Conference. IPCCC, IEEE, pp. 1-2.

Ali, A., Mallick, T., Sakib, S., Hossain, M., Lin, Y.-D., et al., 2021a. Provisioning
fog services to 3GPP subscribers: Authentication and application mobility. arXiv
preprint arXiv:2112.02476.

Ali, A., Sahin, A.U., Ozkasap, 0., Lin, Y.-D., 2021b. The universal fog proxy: A third-
party authentication solution for federated fog systems with multiple protocols.
IEEE Netw. 35 (6), 285-291.

Amanlou, S., Hasan, M.K., Bakar, K.A.A., 2021. Lightweight and secure authentication
scheme for IoT network based on publish-subscribe fog computing model. Comput.
Netw. 199, 108465. http://dx.doi.org/10.1016/j.comnet.2021.108465.

Aruna, M.G., Hasan, M.K., Islam, S., Mohan, K.G., Sharan, P., Hassan, R., 2022. Cloud
to cloud data migration using self sovereign identity for 5G and beyond. Cluster
Comput. 25 (4), 2317-2331. http://dx.doi.org/10.1007/510586-021-03461-7.

Baran, D., 2018. Federated authentication support for OpenNebula.

Bennett, S., 2024. Single sign-on (SSO)statistics 2024. WebinarCare URL: https://
webinarcare.com/best-single-sign-on-software/single-sign-on-statistics/.

Bittencourt, L.F., Diaz-Montes, J., Buyya, R., Rana, O.F., Parashar, M., 2017.
Mobility-aware application scheduling in fog computing. IEEE Cloud Comput. 4,
26-35.

13

Journal of Network and Computer Applications 229 (2024) 103922

Bonomi, F., Milito, R., Zhu, J., Addepalli, S., 2012. Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing. pp. 13-16.

Choudhruy, H., 2012. A new trust model for improved identity privacy in cellular
networks. Int. J. Comput. Appl. 975, 8887.

Choyi, V.K., Brusilovsky, A., 2016. Seamless authentication across multiple entities.
Google Patents, US Patent App. 14/779, 584.

Deebak, B., Al-Turjman, F., Mostarda, L., 2020. Seamless secure anonymous authenti-
cation for cloud-based mobile edge computing. Comput. Electr. Eng. 87, 106782.
http://dx.doi.org/10.1016/j.compeleceng.2020.106782.

Edris, E.K.K., Aiash, M., Loo, J.K.-K., 2020. Network service federated identity (NS-
FId) protocol for service authorization in 5G network. In: 2020 Fifth International
Conference on Fog and Mobile Edge Computing. FMEC, IEEE, pp. 128-135.

Gibbons, K., Raw, J.O., Curran, K., 2014. Security evaluation of the OAuth 2.0
framework. Inf. Manage. Comput. Secur. 22 (3).

Han, K., Ma, M., Li, X., Feng, Z., Hao, J., 2019. An efficient handover authentication
mechanism for 5G wireless network. In: 2019 IEEE Wireless Communications and
Networking Conference. WCNC, IEEE, pp. 1-8.

Kahvazadeh, S., Souza, V.B., Masip-Bruin, X., Marn-Tordera, E., Garcia, J., Diaz, R.,
2017. Securing combined fog-to-cloud system through SDN approach. In: Pro-
ceedings of the 4th Workshop on CrossCloud Infrastructures & Platforms. pp.
1-6.

Leishman, G., 2021. Resetting password and saving time and money at the IT help
desk. Cisco Duo URL: https://duo.com/blog/resetting-passwords-and-saving-time-
and-money-at-the-it-help-desk.

Li, Y., Cheng, Q., Liu, X., Li, X., 2020. A secure anonymous identity-based scheme in
new authentication architecture for mobile edge computing. IEEE Syst. J. 15 (1),
935-946.

McKeown, E., 2023. Top Benefits of single sign-on. URL: https://www.pingidentity.
com/en/resources/blog/post/top-benefits-sso.html.

Megouache, L., Zitouni, A., Djoudi, M., 2020. Ensuring user authentication and data
integrity in multi-cloud environment. Human-centric Comput. Inf. Sci. 10 (1), 15.
http://dx.doi.org/10.1186/513673-020-00224-y.

Mejtoft, T., 2011. Internet of things and co-creation of value. In: 2011 International
Conference on Internet of Things and 4th International Conference on Cyber,
Physical and Social Computing. pp. 672-677.

Mell, P., Grance, T., et al., 2011. The NIST Definition of Cloud Computing. Computer
Security Division, Information Technology Laboratory.

Naik, N., Jenkins, P., 2016. An analysis of open standard identity protocols in
cloud computing security paradigm. In: 2016 IEEE 14th Intl Conf on Dependable,
Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and
Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress. DASC/PiCom/DataCom/CyberSciTech, IEEE, pp.
428-431.

Nakkar, M., Altawy, R., Youssef, A., 2020. Lightweight broadcast authentication
protocol for edge-based applications. IEEE Internet Things J. 7 (12), 11766-11777.
http://dx.doi.org/10.1109/J10T.2020.3002221.

Navas, J., Beltrdn, M., 2019. Understanding and mitigating OpenID connect threats.
Comput. Secur. 84, 1-16.

Ogundoyin, S.0., Kamil, I.A., 2021. A lightweight authentication and key agree-
ment protocol for secure fog-to-fog collaboration. In: 2021 IEEE International
Mediterranean Conference on Communications and Networking. MeditCom, pp.
348-353.

OpenFog Consortium, et al., 2017. OpenFog Reference Architecture for Fog Computing.
Architecture Working Group, pp. 1-162.

Roeland, D., Rommer, S., 2014. Advanced WLAN integration with the 3GPP evolved
packet core. IEEE Commun. Mag. 52 (12), 22-27.

Santos, J., Wauters, T., Volckaert, B., De Turck, F., 2019. Towards network-aware
resource provisioning in Kubernetes for fog computing applications. In: 2019 IEEE
Conference on Network Softwarization. NetSoft, IEEE, pp. 351-359.

Simic, B., 2019. How password-less security benefits helpdesks. Help Net Se-
cur. URL: https://www.helpnetsecurity.com/2019/04/12/password-less-security-
benefits-helpdesks/.

Singh, D., Singh, J., Chhabra, A., 2012. High availability of clouds: Failover strategies
for cloud computing using integrated checkpointing algorithms. In: 2012 Interna-
tional Conference on Communication Systems and Network Technologies. IEEE, pp.
698-703.

Songhorabadi, M., Rahimi, M., MoghadamFarid, A., Kashani, M.H., 2023. Fog com-
puting approaches in IoT-enabled smart cities. J. Netw. Comput. Appl. 211,
103557.

Tao, M., Ota, K., Dong, M., 2017. Foud: Integrating fog and cloud for 5G-enabled V2G
networks. IEEE Netw. 31 (2), 8-13.

Targali, Y., Choyi, V., Shah, Y., 2013. Seamless authentication and mobility across het-
erogeneous networks using federated identity systems. In: 2013 IEEE International
Conference on Communications Workshops. ICC, IEEE, pp. 1232-1237.

Tuli, S., Mahmud, R., Tuli, S., Buyya, R., 2019. Fogbus: A blockchain-based lightweight
framework for edge and fog computing. J. Syst. Softw. 154, 22-36.

Villegas, D., Bobroff, N., Rodero, 1., Delgado, J., Liu, Y., Devarakonda, A., Fong, L.,
Sadjadi, S.M., Parashar, M., 2012. Cloud federation in a layered service model. J.
Comput. System Sci. 78 (5), 1330-1344.

http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb1
http://arxiv.org/abs/2112.02476
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb3
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb3
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb3
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb3
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb3
http://dx.doi.org/10.1016/j.comnet.2021.108465
http://dx.doi.org/10.1007/s10586-021-03461-7
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb6
https://webinarcare.com/best-single-sign-on-software/single-sign-on-statistics/
https://webinarcare.com/best-single-sign-on-software/single-sign-on-statistics/
https://webinarcare.com/best-single-sign-on-software/single-sign-on-statistics/
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb8
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb8
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb8
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb8
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb8
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb9
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb9
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb9
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb9
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb9
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb10
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb10
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb10
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb11
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb11
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb11
http://dx.doi.org/10.1016/j.compeleceng.2020.106782
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb13
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb13
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb13
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb13
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb13
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb14
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb14
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb14
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb15
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb15
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb15
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb15
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb15
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb16
https://duo.com/blog/resetting-passwords-and-saving-time-and-money-at-the-it-help-desk
https://duo.com/blog/resetting-passwords-and-saving-time-and-money-at-the-it-help-desk
https://duo.com/blog/resetting-passwords-and-saving-time-and-money-at-the-it-help-desk
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb18
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb18
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb18
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb18
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb18
https://www.pingidentity.com/en/resources/blog/post/top-benefits-sso.html
https://www.pingidentity.com/en/resources/blog/post/top-benefits-sso.html
https://www.pingidentity.com/en/resources/blog/post/top-benefits-sso.html
http://dx.doi.org/10.1186/s13673-020-00224-y
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb21
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb21
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb21
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb21
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb21
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb22
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb22
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb22
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb23
http://dx.doi.org/10.1109/JIOT.2020.3002221
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb25
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb25
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb25
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb26
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb27
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb27
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb27
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb28
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb28
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb28
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb29
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb29
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb29
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb29
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb29
https://www.helpnetsecurity.com/2019/04/12/password-less-security-benefits-helpdesks/
https://www.helpnetsecurity.com/2019/04/12/password-less-security-benefits-helpdesks/
https://www.helpnetsecurity.com/2019/04/12/password-less-security-benefits-helpdesks/
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb31
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb32
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb32
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb32
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb32
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb32
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb33
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb33
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb33
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb34
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb34
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb34
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb34
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb34
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb35
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb35
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb35
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb36
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb36
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb36
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb36
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb36

A. Ali et al.

Vinoth, R., Deborah, L.J., Vijayakumar, P., Gupta, B.B., 2022. An anonymous pre-
authentication and post-authentication scheme assisted by cloud for medical IoT
environments. IEEE Trans. Netw. Sci. Eng. 9 (5), 3633-3642. http://dx.doi.org/10.
1109/TNSE.2022.3176407.

Zhang, Y., Li, B., Liu, B., Hu, Y., Zheng, H., 2021. A privacy-aware PUFs-based
multiserver authentication protocol in cloud-edge IoT systems using blockchain.
IEEE Internet Things J. 8 (18), 13958-13974. http://dx.doi.org/10.1109/JIOT.
2021.3068410.

Zhang, J., Li, T., Ying, Z., Ma, J., 2023. Trust-based secure multi-cloud collaboration
framework in cloud-fog-assisted IoT. IEEE Trans. Cloud Comput. 11 (2), 1546-1561.

Asad Ali is currently working as a researcher at the National Institute of Cyber Security
(NICS), Taiwan. He received his Ph.D. degree from National Yang Ming Chiao Tung
University (NYCU), Taiwan in 2022. He received his master’s degree in electrical
engineering from National University of Science & Technology (NUST), Pakistan. His
research interests are threat intelligence, network security, wireless communications,
network design and optimization.

Ying-Dar Lin is a Chair Professor of computer science at National Yang Ming Chiao
Tung University (NYCU), Taiwan. He received his Ph.D. in computer science from the
University of California at Los Angeles (UCLA) in 1993. His research interests include
network softwarization, cybersecurity, and wireless communications. His work on multi-
hop cellular was the first along this line, and has been cited over 1000 times. He is
an IEEE Fellow and IEEE Distinguished Lecturer. He has served or is serving on the

14

Journal of Network and Computer Applications 229 (2024) 103922

editorial boards of several IEEE journals and magazines, and was the Editor-in-Chief
of IEEE Communications Surveys and Tutorials (COMST) during 2016-2020.

Jian Liu received his B.S. degree in Applied Chemistry from Tianjin University, China.
He received one M.S. degree in Statistics and one M.S. degree in Computer Science from
West Virginia University, USA in 2018. Jian is now a Ph.D. student in the Department of
Computer Science and Engineering, University of South Carolina. His research focuses
on 5G network transmission and security. He is also interested in cloud and edge
computing and blockchain.

Chin-Tser Huang is a Professor in the Department of Computer Science and Engi-
neering at University of South Carolina at Columbia. He received the B.S. degree
in Computer Science and Information Engineering from National Taiwan University,
Taipei, Taiwan, in 1993, and the M.S. and Ph.D. degrees in Computer Sciences
from The University of Texas at Austin in 1998 and 2003, respectively. His research
interests include network security, network protocol design and verification, wireless
communication systems, cloud and edge computing, blockchain, and game theoretic
modeling. He is the director of the Secure Protocol Implementation and Development
(SPID) Laboratory at the University of South Carolina. He is the author (along with
Mohamed Gouda) of the book “Hop Integrity in the Internet,” published by Springer
in 2005. His research has been funded by DARPA, AFOSR, AFRL, NSF, and NEH.
He is an NRC Research Associate in 2020, and a recipient of the USAF Summer
Faculty Fellowship Award and of the AFRL Visiting Faculty Research Program Award
in 2008-2020. He is a Senior Member of IEEE and ACM.

http://dx.doi.org/10.1109/TNSE.2022.3176407
http://dx.doi.org/10.1109/TNSE.2022.3176407
http://dx.doi.org/10.1109/TNSE.2022.3176407
http://dx.doi.org/10.1109/JIOT.2021.3068410
http://dx.doi.org/10.1109/JIOT.2021.3068410
http://dx.doi.org/10.1109/JIOT.2021.3068410
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb39
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb39
http://refhub.elsevier.com/S1084-8045(24)00099-7/sb39

	The universal federator: A third-party authentication solution to federated cloud, edge, and fog
	Introduction
	Background
	Computing Paradigms Applications
	Cloud Computing
	Edge Computing
	Fog Computing

	Authentication Protocols in Cloud, Edge, and Fog
	OIDC
	EPS-AKA
	802.1x

	Related Work
	Threat Model
	Security Requirements
	Confidentiality
	Integrity
	Replay Resistance
	MITM Resistance
	Data Manipulation Resistance
	Data Leakage Resistance
	Impersonation Resistance

	Problem Statement
	Proposed Universal Federator
	Architecture
	Logic Flow
	Initialization Phase
	Operational Phase

	Forwarding Table
	Message Flow Diagrams
	Edge–Cloud Scenario

	Implementation
	Prototype Architecture
	Experiment Testbed

	Results and Evaluation
	Authentication Latency Analysis
	Authentication time for all scenarios
	Latency breakdown by entities
	Latency breakdown by protocols
	Bottleneck Analysis
	Authentication with vs. without proposed federator

	Scalability Testing

	Discussion
	Federator Backup Analysis
	Cost Analysis
	Security Analysis
	Confidentiality and Integrity
	Forward Secrecy
	Resistance to replay
	Resistance to MITM and Data Manipulation Attacks
	Resistance to Data Leakage
	Resistance to Impersonation
	Compromised federator

	Conclusions and Future Research Directions
	Conclusions
	Future Research Directions

	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

